© h.hofstede (h.hofstede@hogeland.nl)

       
1. Examenvraagstuk VWO Wiskunde B, 2002.
       
  Voor elke beginwaarde u0 is gegeven de rij  un = -1/2 ē (un-1)3  (voor  n = 1, 2, 3, ...)
In de figuur hiernaast is de grafiek van de functie y = -1/2 ē x3 getekend.

Neem u0 = 1,5 

     
  a. Geef in deze figuur op de x-as de waarden u1 en u2 aan met behulp van een webgrafiek.
     
  Of de rij u0, u1, u2, ... naar 0 convergeert hangt af van de beginwaarde u0.
     
  b. Bereken exact voor welke waarden van u0 de rij u0, u1, u2, ... naar 0 convergeert .
   

 -2 < u0 < 2

       
2. Examenvraagstuk VWO Wiskunde B, 2006.
       
  Gegeven is de functie   f(x) = √(4x - x2 ), op het domein [0,4].
Voor startwaarden u0 tussen 0 en 8 is de rij u0, u1, u2, ... gedefinieerd door  un + 1 = f (1/2un).
     
  a. Bereken u4 voor het geval dat u3 = 4/5.
 

1,2

  In de figuur hiernaast zijn getekend: de grafiek van f, de lijn y = x en de lijn y = 1/2x.
Op de x-as is een zekere startwaarde u0 aangegeven.
       
  b. Teken in deze figuur met behulp van de drie grafieken de plaats van u2 op de x-as.
       
  c. Voor elke startwaarde u0 tussen 0 en 8 convergeert de rij u0, u1, u2, ...  naar dezelfde positieve limiet.
Bereken deze limiet op algebraÔsche wijze.
     

1,6

       
3. Examenvraagstuk VWO Wiskunde B, 2008.

We beschouwen de rij van Fibonacci: 1, 1, 2, 3, 5, 8, 13, Ö.
Deze rij wordt beschreven door de formules:

 

  We maken bij de rij van Fibonacci een quotiŽntrij door elke term (behalve de eerste) door zijn voorganger te delen:
 

  a. Toon aan dat voor elke n 2 geldt:  
       
  De quotiŽntrij wordt dus beschreven door de formules

 
  In de figuur hiernaast zijn de grafieken getekend van
y =
1 + 1/x en y = x .
Verder is op de
x-as de plaats van q1 aangegeven.
     
  b. Geef in deze figuur, met behulp van een webgrafiek, op de x-as de plaats van de termen q2 , q3 en q4 van de quotiŽntrij aan.
       
  c. De quotiŽntrij heeft een limiet. Bereken deze limiet exact.
       
4. Examenvraagstuk VWO Wiskunde A, 2003.

De ontwikkeling van records in de sport is vaak onderzocht. In kranten en tijdschriften worden grafieken getoond waarin die ontwikkeling zichtbaar wordt. In onderstaande figuur zie je zo'n grafiek. Het gaat om de 100 meter hardlopen voor mannen. De recordtijden zijn in seconden.
       
 

       
  Men heeft het volgende nieuwe model opgesteld, dat ook na 1968 redelijk goed past bij de gegevens uit bovenstaande grafiek:  Wt = 0,9918 ē Wt - 1 + 0,075  met  W0 = 10,4

Hierbij is t weer de tijd in jaren en komt t = 0 overeen met 1921.
Volgens dit nieuwe model is in 2000 het wereldrecord 9,80 seconden.

       
  a. Bereken welke recordtijd dit model voor het jaar 2010 voorspelt. Geef je antwoord in 2 decimalen nauwkeurig.
       
  Volgens dit model zullen de recordtijden steeds lager worden. Maar op den duur zullen de records nauwelijks meer veranderen; ze naderen tot een evenwichtswaarde.
       
  b. Maak een schets van de webgrafiek bij het nieuwe model. Leg uit hoe je in deze webgrafiek ziet dat de recordtijden steeds lager worden en bereken de evenwichtswaarde.
       
5. Examenvraagstuk VWO Wiskunde A, 2005.

De bioloog W. Ricker heeft veel onderzoek gedaan naar zalm in Canadese rivieren. Jaarlijkse tellingen hebben uitgewezen dat de omvang van de zalmpopulatie sterk fluctueert. Zo komt het voor dat de omvang van de populatie na een jaar meer dan verdubbeld is. weer een jaar later is de omvang dan weer meer dan gehalveerd.
Ricker ontwikkelde rond 1955 een model dat goed bruikbaar is om dit verschijnsel te beschrijven. In deze opgave bestuderen we het model:  P(t + 1) = 9 ē P(t) ē 0,99P(t)    met beginwaarde P(0)

In deze recursievergelijking is t het aantal jaren na 1984 (het tijdstip t = 0 komt dus overeen met 1 januari 1984) en is P(t) het aantal zalmen in duizendtallen aan het begin van het betreffende jaar.

We nemen P(0) = 25.

       
  a. Bereken met hoeveel procent de omvang van de zalmpopulatie volgens dit model is gedaald tussen begin 1986 en begin 1987.
     

41%

  In de figuur hiernaast is de grafiek getekend van 
y
= 9x ē 0,99x .
Ook is de grafiek van y = x getekend.

In dengrafiek zie je dat het model twee evenwichtswaarden heeft. Eťn ervan is P(t) = 0

     
  b. Bereken de tweede evenwichtswaarde
   

218,62

  Als we voor de beginwaarde de evenwichtswaarde kiezen dan zal de rij P(0), P(1), P(2), ... steeds dezelfde (evenwichts)waarde hebben.
Een evenwichtswaarde noemen we stabiel als bij keuzes van de beginwaardes dicht in de buurt van de evenwichtswaarde geldt: de rij P(0), P(1), P(2),... nadert tot die evenwichtswaarde.
       
  c. Onderzoek met een webgrafiek in de figuur of de tweede evenwichtswaarde van het model stabiel is.
       
  De ontwikkeling van de populatie volgens dit model hangt af van de beginwaarde P(0). Het is mogelijk deze beginwaarde zo te kiezen dat dat de populatie al direct het volgende jaar zijn maximale omvang bereikt.
       
  d. Bereken bij welke beginwaarde dit het geval is.
     

99,50

  Als we weer uitgaan van 25 duizend zalmen (dus P(0) = 25), zal het aantal zalmen een jaar later 175 duizend zijn (dus P(1) = 175) Wanneer men in de volgende jaren telkens in het begin van het jaar 150 duizend zalmen vangt, zal zich telkens dezelfde situatie voordoen: het model geeft 25 duizend zalmen aan het begin van het jaar en 175 duizend zalmen aan het eind van het jaar. We zeggen daarom dat de beginwaarde P(0) = 25 ruimt biedt om elk jaar 150 duizend zalmen te vangen want P(1) = P(0) + 150.
Er is nog een beginwaarde die ruimte biedt om elk jaar 150 duizend zalmen te vangen.
       
  e. Onderzoek welke andere waarde van P(0) eveneens ruimte biedt om elk jaar 150 duizend zalmen te vangen.
     

149,48

     

© h.hofstede (h.hofstede@hogeland.nl)