© h.hofstede (h.hofstede@hogeland.nl)

Boxplots vergelijken
       
Je kunt een boxplot handig gebruiken om iets duidelijker aan te geven of er tussen twee metingen van verschillende groepen een (groot) verschil zit of niet.
Hieronder zie je drie setjes (in drie kleuren) van twee boxplots. De medianen van de drie bovenstens zijn gelijk en ook de medianen van de drie ondersten.
       

       
Wat alleen de medianen betreft zou je dus kunnen stellen dat de verschillen tussen de bovenste en de onderste boxplots in alle drie de gevallen hetzelfde zijn.
Toch is dat duidelijk niet zo!
De groene twee verschillen eigenlijk heel veel: er zijn eigenlijk helemaal geen gelijke metingen geweest, alles is verschillend. De grootste van de ene is nog kleiner dan de kleinste van de tweede.
De blauwe twee verschillen erg weinig, de twee middelste blauwe boxen zijn aardig vergelijkbaar, er overlappen veel metingen.
De roden zitten daar een beetje tussen in. Niet heel veel verschillend zoals de groenen, ook niet erg weinig zoals de blauwen.

Maar ja, wat vinden we een "groot" verschil en wat een "klein". Kwestie van smaak?
Je snapt wel dat een "kwestie van smaak" niet kan in de wiskunde. We maken daarom (nog steeds vrij willekeurig) de volgende afspraak:
(daarbij bedoelen we met de "box" van een boxplot het deel tussen Q1 en Q3: het eigenlijke doosje)
       
Het verschil tussen twee boxplots:
de boxen overlappen helemaal niet. het verschil is groot
de boxen overlappen wel, en minstens één van beide medianen  ligt buiten de box van de andere plot. het verschil is middelmatig
alle andere gevallen. het verschil is klein
       
       
 
       
                                       
       
  OPGAVEN.
       
       
       
       

© h.hofstede (h.hofstede@hogeland.nl)