Eerst gebruiken we de eigenschap dat, als een cirkel raakt aan een andere, dat dan de lijn door het raakpunt en het middelpunt van de ene cirkel ook door het middelpunt van de andere cirkel gaat.
Dat moet wel, want deze lijn staat loodrecht op de raaklijn in R, en dat staan de lijnen vanuit de middelpunten ook.
Dat betekent in de figuur hiernaast dat als we AM verlengen, dat die lijn dan door D (het middelpunt van de halve cirkel) gaat.
DA = straal halve cirkel = 0,5 (stel de zijde van het vierkant 1)
Stel de straal van de cirkel R
Dan is MD = 0,5 - R
Pythagoras in CDM:  R2 + x2 = (0,5-R)2
Dat geeft na uitwerken  x = (0,25 - R)    .......(1)

Nu het raakpunt B nog gebruiken (de diagonaal dus)
a = 22,5
Omdat tan 45 = 1, kunnen we deze verdubbelingsformule handig gebruiken:
Met b = 22,5 geeft dat   1- tan2b = 2tanb
Daaruit volgt  tanb = -1 + 2   (met de ABC-formule)
driehoek MCE geeft dan  -1 + 2 = R/(x+ 0,5)
Dat geeft  met de eerder gevonden formule (1) voor x:      (-1 + 2)((0,25 - R) + 0,5) = R
(-1 + 2)((0,25 - R) = R - (-1 + 2)0,5
Nu kwadrateren:   (3-22)(0,25 - R) = R2 + R - R2 + 0,75 - 0,52
Herrangschikken en alles naar n kant:   R (R + 4 - 32) = 0 
Conclusie:  R = 32 - 4
En nu de tweede nog......
Die is gelukkig makkelijker.
In driehoek AGD:  (0,5 - r)2 + x2 = (0,5 + r)2
Daaruit volgt  x = (2r)
Dus EF = 1 - (2r)

In driehoek FAE:  tan a =  -1 + 2 = r/(1 - x)
Dus  (-1 + 2)(1 - (2r)) = r
-1 + 2 + (2r) - 2r = r
  r
+ r (2 - 2) + (1 - 2) = 0
kwadraat afsplitsen:
(r  + 1 - 0,52)2  - (1 - 0,52)2 + (1 - 2) = 0
   (r + 1 - 0,52)2 = 0,5
   r  + 1 - 0,52 = 0,5
   r  = 0,52 - 1 + 0,52 = 2 - 1
   r = (2 - 1)2 = 3 - 22

r = 3 - 22