© h.hofstede (h.hofstede@hogeland.nl)

       
1. a. z3 = 8i  =  8(cos(1/2π + k2π) + isin(1/2π + k2π))
z = 2(cos(1/6π + k2/3π) + isin(1/6π + k2/3π))

z
1 = 2(cos1/6π + isin1/6π) = √3 + i
z
2 = 2(cos5/6π + isin5/6π) = -√3 + i
z
3 = 2(cos11/2π + isin11/2π) = -2i
       
  b. z2 = 2 + 6i  =  √(40)•(cos(α + k2π) + isin(α + k2π))  met  tanα = 6/2 = 3  dus  α = 1,25
z = 401/4 • (cos(0,62 + kπ) + isin(0,62 + kπ))

z
1 = 2,51• (cos0,62 + isin0,62) = 2,04 + 1,47i
z
2 = 2,51 • (cos3,77 + isin3,77) = -2,04 - 1,47i
       
  c. z5 = -32 =  32(cos(π + k2π) + isin(π + k2π))
z = 2(cos(1/5π + k2/5π) + isin(1/5π + k2/5π))

z
1 = 2(cos1/5π + isin1/5π) = 1,62 + 1,18i
z
2 = 2(cos3/5π + isin3/5π) = -0,62 + 1,90i
z
3 = 2(cosπ + isinπ) = -2
z
4 = 2(cos7/5π + isin7/5π) =  -0,62 - 1,90i
z
5 = 2(cos9/5π + isin9/5π) = 1,62 - 1,18i   
       
  d. z4 = 1 + i  =  √2 • (cos(1/4π + k2π ) + isin(1/4π  + k2π ))
z =
21/8 • (cos(1/16π  + k 1/2π ) + isin(1/16π  + k1/2π ))

z
1 = 21/8(cos1/16π  + isin1/16π ) = 1,07 + 0,21i
z
2 = 21/8(cos9/16π  + isin9/16π ) = -0,21 + 1,07i
z
3 = 21/8(cos17/16π  + isin17/16π ) = -1,07 - 0,21i
z
4 = 21/8(cos25/16π  + isin25/16π ) = 0,21 - 1,07i   
       
  e. z3 = 6 + 4i  =  √52(cos(α + k2π) + isin(α + k2π))   met  tanα = 4/6  dus α = 0,59
z = 521/6(cos(0,20 + k2/3π) + isin(0,20 + k2/3π))

z1 = 521/6(cos0,20 + isin0,20 ) = 1,89 + 0,38i
z
2 = 521/6(cos2,29 + i sin2,29) = -1,27 + 1,45i
z
3 = 521/6(cos4,38 + isin4,38) = -0,62 - 1,83i
       
  f.  (z - i)3 = 3i + 5  =  √34(cos(α + k2π) + isin(α + k2π))  met  tanα = 3/5  dus   α = 0,54
z - i = 341/6 (cos(0,18 + k2/3π) + isin(0,18 + k2/3π))

z1 - i =  341/6(cos0,18 + isin0,18) = 1,77 + 0,32i   dus  z1 = 1,77 + 1,32i
z
2 - i  = 341/6(cos2,27 + isin2,27) = -1,16 + 1,37i   dus  z2 = -1,16 + 2,37i
z
3 - i = 341/6(cos4,37 + isin4,37) = -0,61 - 1,69i   dus  z3 = -0,61 - 0,69i   
       
  g. (2i + 3 + 2z)3 = 2 - 2 =  √8(cos(7/4π + k2π) + isin(7/4π + k2π))
2i + 3 + 2z  =  √2 • (cos(7/12π + k2/3π) + isin(7/12π + k2/3π))

2i + 3 + 2z1 = √2(cos7/12π + isin7/12π) = -0,37 + 1,37i  dus  2z1 = -3,37 - 0,63i  dus  z1 = -1,69 - 0,32i
2i + 3 + 2z2 = √2(cos15/12π + isin15/12π) = -1 - i  dus  2z2 = -4 - 3i dus  z2 = -2 - 1,5i
2i + 3 + 2z3 = √2(cos23/12π + isin23/12π) = 1,37 - 0,37i  dus  2z3 = -1,63 - 2,37i  dus  z3 = -0,82 - 1,18i  
       
  h. (iz)5 = 2i =  2(cos(1/2π + k2π) + isin(1/2π + k2π))
iz = 21/5(cos(1/10π + k2/5π) + isin(1/10π + k2/5π))

iz1 = 21/5(cos1/10π + isin1/10π) = 1,09 + 0,35i  dus  z1 = 0,35 - 1,09i
iz
2 = 21/5(cos5/10π + isin5/10π) =  0 + 1,15i  dus  z2 = 1,15
iz3 = 21/5(cos9/10π + isin9/10π) = -1,09 + 0,35i  dus  z3 = 0,35 + 1,09i
iz
4 = 21/5(cos13/10π + isin13/10π) = -0,68 - 0,93i  dus  z4 = -0,93 + 0,68i
iz
5 = 21/5(cos17/10π + isin17/10π) = 0,68 - 0,93i   dus  z5 = -0,93 - 0,68i
       
2. a. z2 = 2 + 3i  =  √13(cos(α + k2π) + isin(α + k2π))  met  tanα = 3/2  dus  α = 0,98
z = 131/4 (cos(0,49 + kπ) + isin(0,49 + kπ))

z1 = 131/4(cos0,49 + isin0,49) = 1,67 + 0,90i
z
2 = 131/4(cos3,63 + isin3,63) = -1,67 - 0,90i
       
  b. z2 =  2 + 2i  = √8(cos(1/4π + k2π) + isin(1/4π + k2π))
z
= 81/4(cos(1/8π + kπ) + isin(1/8π + kπ)

z
1 = 81/4(cos1/8π + isin1/8π) = 1,55 + 0,64i
z
2 = 81/4(cos9/8π + isin9/8π) = -1,55 - 0,64i

z
2 = 3i  = 3(cos(1/2π + k2π) + isin(1/2π + k2π))
z = √3(cos(1/4π + kπ) + isin(1/4π + kπ)

z3 = √3(cos1/4π + isin1/4π) = 1,22 + 1,22i
z
4 = √3(cos5/4π + isin5/4π) = -1,22 - 1,22i

Dat geeft samen voor z de mogelijkheden:
z
= 1,55 + 0,64i + 1,22 + 1,22i = 2,77 + 1,86i
z
= 1,55 + 0,64i - 1,22 - 1,22i = 0,33 - 0,58i
z
= -1,55 - 0,64i + 1,22 + 1,22i = -0,33 + 0,58i
z
= -1,55 - 0,64i - 1,22 - 1,22i - -2,77 - 1,86i
       
  c. z5 = 1/2 - 2i  = √4,25(cos(α + 2kπ) + isin(α + k2π))  met  tanα = -4  dus  α = -1,32
z = 4,251/10 (cos(-1,32 + k2/5π) + isin(-1,32 + k2/5π))

z1 = 4,251/10(cos-1,32 + isin-1,32) = 0,28 - 1,12i
z
2 = 4,251/10(cos-0,07 + isin-0,07) = 1,15 - 0,08i
z
3 = 4,251/10(cos1,19 + isin1,19) = 0,43 + 1,07i
z
4 = 4,251/10(cos2,44 + isin2,44) = -0,89 + 0,74i
z
5 = 4,251/10 (cos3,70 + isin3,70) = -0,98 - 0,61i
       
  d. z3 =  (1 + 3i)2 = 1 + 6i - 9 = -8 + 6i = 10(cos(α + k2π) + isin(α + k2π))   met  tanα = 6/-8 dus α = -0,64
z = 101/3(cos(-0,21 +  k2/3π) + isin(-0,21 + k2/3π))

z1 = 101/3(cos-0,21 + isin-0,21) = 2,11  - 0,46i 
z2 = 101/3(cos1,88 + isin1,88) = -0,66 + 2,05i
z
3 = 101/3(cos3,97 + isin3,97) = -1,45  -  1,59i  
       
3.  (z2 + 2i)3 = 4 + 5i  =  √41(cos(α + k2π) + isin(α + k2π))  met  tanα = 5/4  dus  α = 0,896
z2 + 2i = 411/6(cos(0,30 + k2/3π) + isin(0,30 + k2/3π))

z12 + 2i = 411/6(cos0,30 + isin0,30) = 1,775 + 0,546i dus  z12 = 1,775 - 1,455i
z
22 + 2i = 411/6(cos2,39 + isin2,39) = -1,361 + 1,264i  dus  z22 = -1,361 - 0,736i
z
32 + 2i = 411/6(cos4,49 + isin4,49) = -0,414 - 1,810i  dus  z32 = -0,414 - 3,810i

Dat zijn drie nieuwe opgaven:
  z12 = 1,775 - 1,455i = 2,295(cos(α + k2π) + isin(α + k2π))  met  tanα = -1,455/1,775  dus  α = -0,687
z1 =  2,2950,5(cos(-0,343 + kπ) + isin(-0,343 + kπ))
Dat geeft
z
= 2,2950,5(cos-0,343 + isin-0,343) = 1,43 - 0,51i
z
= 2,2950,5(cos2,798 + isin2,798) = -1,43 + 0,51i

z
22 = -1,361 - 0,736i  =  1,547(cos(α + k2π) + isin(α + k2π))  met  tanα = -0,736/-1,361  dus α = -2,646   (in IV)
z2 = 1,5470,5(cos(-1,323 + kπ) + isin(-1,323 + kπ)
Dat geeft
z = 1,5470,5(cos-1,323 + isin-1,323) = 0,31 - 1,21i
z
= 1,5470,5(cos1,819 + isin1,819) = -0,31 + 1,21i

z
32 = -0,414 - 3,810i  =  3,832(cos(α + k2π) + isin(α + k2π))  met  tanα = -3,810/-0,414  dus  α = 4,604     (in IV)
z3 = 3,8320,5(cos(2,302 + kπ) + isin(2,302 + kπ))
Dat geeft:
z = 3,8320,5(cos2,302 + isin2,302) = -1,31 + 1,46i
z
= 3,8320,5(cos5,444 + isin5,444) =  1,31 - 1,46i

De zes rode getallen zijn oplossingen voor z
       
4. a. 1/2√3 + 1/2i   heeft  r = 1 en  hoek  φ = 1/6π
De wortel daarvan (tenminste de ene)  heeft dan  r = 1 en hoek  1/12π dus dat is het getal   cos(1/12π) + isin(1/12π)
       
  b. (a + bi)2 =  1/2√3 + 1/2i 
a2 + 2abi  - b2  = 1/2√3 + 1/2i

De reλle delen van beide kanten zijn gelijk:   a2 - b2 = 1/2√3
De imaginaire delen van beide kanten zijn gelijk:   2ab = 1/2
       
  c. Uit de tweede vergelijking volgt  b = 1/4a  en dat kun je invullen in de eerste:
a2 - 1/(16a2)1/2√3
Noem a2p  dan staat hier  p - 1/(16p) = 1/2√3
16p2 - 1 =  8p√3
16p2  - 8p√3  - 1 = 0
ABC-formule:   p = (8√3 ± √(192 + 64))/32  =  (8√3  ±  16)/32  = 1/4√3 ±  1/2
Maar omdat  p positief moet zijn (het is immers een kwadraat) voldoet alleen  p = 1/2 + 1/4√3
Dus  a2 = 1/2 + 1/4√3
       
  d. cos1/12π = a = √(1/2 + 1/4√3)  
       
5. a. Elke keer als je met z vermenigvuldigt wordt de afstand tot de oorsprong (r) groter, want de spiraal draait weg van O. Dus is rZ > 1
       
  b. z8  heeft afstand tot de oorsprong 2, dus  rz8 = 2  dus  rZ = 21/8
z10  heeft hoek  φ = 11/2π,  dus  z heeft hoek  1,5p/10 = 0,15π

Beiden geldt als  z = 21/8 (cos0,15π + isin0,15π)
       

© h.hofstede (h.hofstede@hogeland.nl)