© h.hofstede (h.hofstede@hogeland.nl)

Gemiddelde toenames
       
Hiernaast staat de grafiek van het temperatuurverloop op 6 februari 1995 in Groningen. Je ziet dat vanaf middernacht de temperatuur eerst nog wat afneemt, maar vanaf ongeveer 3 uur gaat toenemen tot maximaal ongeveer 12,5 ºC om 15 uur.

We zijn nu geïnteresseerd in de volgende vraag:

Wat is de gemiddelde toename per uur tussen 3 uur en 9 uur?

We lezen uit de grafiek af dat om 3 uur te temperatuur ongeveer 3,5ºC was en om 9 uur 8 ºC.

De toename is dus  8 - 3,5 = 4,5ºC geweest maar dat was over een periode van  9 - 3 = 6 uur.
De gemiddelde toename was dus 4,5/6 = 0,75 ºC/uur.
Zo. Dat was te doen. Voor de gemiddelde toename deel je gewoon de totale toename door het aantal uur. Tijd voor de volgende vraag:

"Wat stelt het voor in de grafiek?"

De totale toename was 4,5ºC en die vonden we door 8 - 3,5 te berekenen. Dat is dus het verschil van beide y-waarden, ofwel Δy: het blauwe lijnstukje in de grafiek hiernaast.

Het aantal uur was 6 en dat vonden we door 9 - 3 te berekenen. Dat is dus het verschil van beide x-waarden, ofwel Δx:  het groene lijnstukje in de grafiek. De gemiddelde toename hebben we berekend als Δy/Δx en die kennen we nog van vroeger: het is de helling van de lijn tussen beide punten.
Conclusie:  de helling van de rode lijn is 0,75
 
De gemiddelde toename tussen twee punten van een grafiek is  de helling van de rechte lijn daartussen.

Deze gemiddelde toename heet ook wel het differentiequotiënt.
Als je een formule voor de grafiek hebt, dan hoef je de y-waarden natuurlijk niet af te lezen maar kun je ze gewoon berekenen, dat is veel nauwkeuriger.

Dit is allemaal hetzelfde:

       
gemiddelde toename tussen punt A en punt B
differentiequotiënt op interval  [xA, xB]
helling van lijnstuk AB
       
Speciaal geval:  Als y  de afstand voorstelt en x de tijd.
       
n de grafiek hiernaast staat op de x-as de tijd dat iemand aan het fietsen is, en op de y-as de afstand die hij heeft afgelegd.
We berekenen het differentiequotiënt tussen x = 20 en x = 60
Bij x = 20 hoort ongeveer y = 2 en bij x = 60 hoort ongeveer  y = 15
Dat geeft voor het differentiequotiënt  (15 - 2)/(60 - 20) = 13/40 = 0,325

Die 0,325 is dus de totale afgelegde afstand (13 km) gedeeld door de totale tijd (40 minuten).  In dit geval 0,325 km per minuut. Maar dat is de snelheid (immers snelheid is afstand gedeeld door tijd)
Kortom, de gemiddelde snelheid tussen 20 en 60 minuten is 0,325 km/min. (dat is 19,5 km/uur)

Bij een tijd-afstand grafiek is het differentiequotiënt
de gemiddelde snelheid.
       
 
       
                                       
       
  OPGAVEN.
       
1. a. Gegeven is de formule  N = 4t + 2√t .
Bereken het differentiequotiënt op interval [3, 8] in twee decimalen nauwkeurig.
       
  b. Gegeven is de formule  P(t) = 5t - 2/t
Bereken het differentiequotiënt op interval [-5, -2] in twee decimalen nauwkeurig.
       
2. Hiernaast staat de grafiek van een formule  f.
     
  a. Bereken de gemiddelde toename
tussen x = 3 en x = 8
     
  b. Noem drie intervallen waarop het differentiequotiënt gelijk is aan nul.
       
3. Annelies en haar broer Gerben gaan met de fiets naar school.
De afgelegde weg s als functie van de tijd t staat in de grafiek hieronder.
       
 

       
  a. Bereken voor Annelies de gemiddelde snelheid op de intervallen [0,4] en [4,6]. Verklaar je antwoorden.
       
  b. Wie rijdt de eerste twee minuten gemiddeld het snelst?
       
  c. Wie rijdt tussen t = 3,5 en t = 4 het snelst? Hoe zie je dat aan de grafiek?
       
  d. Wanneer passeert Gerben Annelies? Hoe zie je aan de grafiek dat hij op dat moment sneller rijdt?
       
4. Hiernaast zie je de grafiek van twee joggers (mevrouw A en mevrouw B) die hetzelfde parcours lopen. Zoals je ziet vertrekt mevrouw B later dan mevrouw A.

     
  a. Bereken de gemiddelde snelheid van mevrouw B gedurende het eerste  half uur dat zij loopt.
     
  b. Bereken de gemiddelde snelheid van mevrouw A gedurende het tweede half uur dat zij loopt.
       
  c. De beide dames hebben een loophorloge om met GPS functie. Dat horloge geeft o.a. hun gemiddelde snelheid vanaf het begin aan.
Op welk moment tijdens haar loop geeft het horloge van mevrouw A de grootste gemiddelde snelheid aan?
       

© h.hofstede (h.hofstede@hogeland.nl)