| Een Waar Gebeurd
                Horrorverhaal ! | 
             
            
               | 
               | 
             
            
              In 1897 probeerde de staat Indiana
                in Amerika de volgende wet door te voeren. Ongelooflijk, maar
                waar. 
                Deze wet is sindsdien bekend als de "Indiana Pi Bill".
                Dr. Edwin J. Goodman, een arts uit Solitude, Posey County,
                Indiana was ervan overtuigd dat hij de cirkel gekwadrateerd had,
                en hij besloot dat de staat Indiana de eerste was die van zijn
                nieuwe ontdekking mocht profiteren. Zij mochten zijn nieuwe
                ontdekking gratis op hun scholen gaan gebruiken. De rest van het
                land en van de wereld zou hem later royalty moeten betalen om
                zijn ontdekking te mogen gebruiken.
                Vooraf was deze wet al door de onderwijscommissie met 67
                tegen 0 stemmen aangenomen! 
                Hier is de volledige tekst van het wetsvoorstel:  | 
             
            
               | 
               | 
             
            
              
                
                  
                    
                       
                        
                          HOUSE BILL NO. 246
                          "A bill for an act introducing a new
                          mathematical truth and offered as a contribution to
                          education to be used only by the State of Indiana free
                          of cost by paying any royalties whatever on the same,
                          provided it is accepted and adopted by the official
                          action of the legislature of 1897.
                           "Section 1. Be it enacted by the General
                          Assembly of the State of Indiana: It has been found
                          that a circular area is to the square on a line equal
                          to the quadrant of the circumference, as the area of
                          an equilateral rectangle is to the square on one side.
                          The diameter employed as the linear unit according to
                          the present rule in computing the circle's area is
                          entirely wrong, as it represents the circles area one
                          and one-fifths times the area of a square whose
                          perimeter is equal to the circumference of the circle.
                          This is because one-fifth of the diameter fils to be
                          represented four times in the circle's circumference.
                          For example: if we multiply the perimeter of a square
                          by one-fourth of any line one-fifth greater than one
                          side, we can, in like manner make the square's area to
                          appear one fifth greater than the fact, as is done by
                          taking the diameter for the linear unit instead of the
                          quadrant of the circle's circumference.
                           "Section 2. It is impossible to compute the
                          area of a circle on the diameter as the linear unit
                          without trespassing upon the area outside the circle
                          to the extent of including one-fifth more area than is
                          contained within the circle's circumference, because
                          the square on the diameter produces the side of a
                          square which equals nine when the arc of ninety
                          degrees equals eight. By taking the quadrant of the
                          circle's circumference for the linear unit, we fulfill
                          the requirements of both quadrature and rectification
                          of the circle's circumference. Furthermore, it has
                          revealed the ratio of the chord and arc of ninety
                          degrees, which is as seven to eight, and also the
                          ratio of the diagonal and one side of a square which
                          is as ten to seven, disclosing the fourth important
                          fact, that the ratio of the diameter and circumference
                          is as five-fourths to four; and because of these facts
                          and the further fact that the rule in present use
                          fails to work both ways mathematically, it should be
                          discarded as wholly wanting and misleading in its
                          practical applications.
                           "Section 3. In further proof of the value
                          of the author's proposed contribution to education,
                          and offered as a gift to the State of Indiana, is the
                          fact of his solutions of the trisection of the angle,
                          duplication of the cube and quadrature having been
                          already accepted as contributions to science by the
                          American Mathematical Monthly, the leading exponent of
                          mathematical thought in this country. And be it
                          remembered that these noted problems had been long
                          since given up by scientific bodies as unsolvable
                          mysteries and above man's ability to comprehend." 
                            
                          
                            
                              | 
                                 LEGISLATIVE HISTORY 
                                Introduced 
                                IN THE HOUSE 
                                Read first time January 18th, 1897  
                                Referred to Committee on Canals 
                                Reported and referred to Committee on Education
                                January 19th, 1897 
                                Reported back February 2nd, 1897 
                                Read second time February 5th, 1897 
                                Ordered engrossed February 5th, 1897 
                                Read third time February 5th, 1897 
                                Passed February 5th, 1897 
                                Ayes - 67 - Noes -0-  
                                 
                                Introduced by Record  
                                IN THE SENATE  
                                Read first time and referred to 
                                committee on Temperance, February 11th, 1897 
                                Reported favorable February 12th, 1897 
                                Read second time and indefinitely postponed
                                February 12, 1897 
                               | 
                             
                           
                         
                       | 
                     
                   
                 
                
                  
                    
                       | 
                       | 
                     
                    
                      | Brrrrrrr....!!!! | 
                     
                    
                       | 
                       | 
                     
                    
                      Gelukkig voor Indiana was
                        op 5 februari het hoofd van  de "Purdue
                        University Mathematics Department", professor Waldo,
                        aanwezig om te lobbyen voor een budget voor zijn
                        universiteit. Hij was verbaasd dat er wiskunde werd
                        besproken inde General Assembly. Maar deze verbazing
                        sloeg om in afschuw toen hij ontdekte wat er besproken
                        werd. Die avond  "coachte"" hij de
                        senatoren over de wet.  
                         
                        Met succes. De wet haalde het niet....... 
                        Niet alleen probeerde Goodman de verkeerde waarde
                        voor p te introduceren; deze
                        "wetenschapper"  had waarschijnlijk zelf
                        niet eens door dat hij ook verschillende waarden voor p
                        beoogde. 
                        Ik citeer uit de tekst hierboven: 
                        
                          
                            
                              | ...
                                " It has been found that a circular area is
                                to the square on a line equal to the quadrant of
                                the circumference, as the area of an equilateral
                                rectangle is to the square on one side..." | 
                             
                           
                         
                        Met "equilateral rectangle" wordt
                        natuurlijk gewoon een vierkant bedoeld. Dan staat hier
                        in normale taal: 
                         
                           | 
                      
                        
                       | 
                     
                    
                       | 
                       | 
                     
                    
                      
                        
                          
                            
                              | ofwel     | 
                              
                                 
                                 | 
                              
                                
                                
                                
                                
                                  en daaruit volgt gemakkelijk 
                                p
                                = 4 | 
                             
                           
                         
                        Het volgende citaat uit dezelfde tekst: 
                        
                          
                            
                              | ...
                                " The diameter employed as the linear unit
                                according to the present rule in computing the
                                circle's area is entirely wrong, as it
                                represents the circles area one and one-fifths
                                times the area of a square whose perimeter is
                                equal to the circumference of the circle...."  | 
                             
                           
                         
                        Daar staat dus  p
                        = 1/5 • (oppervlakte van het
                        vierkant waarvan de omtrek hetzelfde is als van de
                        cirkel) 
                        
                          
                            
                              | Dat geeft:    | 
                              
                                   | 
                             
                           
                         
                        en daaruit volgt  p
                        = 20/6 = 10/3
                        » 3,333 
                         
                        Op naar de volgende: 
                        
                          
                            
                              | 
                                 ..." the ratio of the
                                chord and arc of ninety degrees, which is as
                                seven to eight..."  | 
                             
                           
                         
                          
                        
                          
                            
                              | Hier staat eigenlijk:     | 
                              
                                   | 
                             
                           
                         
                        en daaruit volgt  p
                        » 3,23  | 
                     
                    
                       | 
                       | 
                     
                    
                      Om te laten zien dat
                        Goodman niet alleen van p
                        geen verstand had, maar ook niet van andere wiskunde het
                        volgende citaat: 
                         
                        
                          
                            
                              | 
                                 ..." the ratio of the
                                diagonal and one side of a square which is as
                                ten to seven...."  | 
                             
                           
                         
                         
                        Daaruit volgt en passant dat Ö2/1
                        = 10/7  ofwel  Ö2
                        » 1,43
  | 
                     
                    
                       | 
                       | 
                     
                    
                      Het laatste citaat dan
                        maar: 
                         
                        
                          
                            
                              | 
                                 ..." the ratio of the
                                diameter and circumference is as five-fourths to
                                four..."  | 
                             
                           
                         
                         
                        daar staat dus  2r/2pr
                        = 1,25/4  Þ 
                        p »
                        3,2
  | 
                     
                    
                       | 
                       | 
                     
                    
                      En zo hebben we vijf blunders in één
                        document. 
                        Typisch DOMMIGHEID! | 
                       | 
                     
                   
                 
                  
                   | 
             
           
         
       |